Discrete dynamical systems embedded in Cantor sets
نویسندگان
چکیده
منابع مشابه
Fe b 20 06 DISCRETE DYNAMICAL SYSTEMS EMBEDDED IN CANTOR SETS
While the notion of chaos is well established for dynamical systems on manifolds, it is not so for dynamical systems over discrete spaces with N variables, as binary neural networks and cellular automata. The main difficulty is the choice of a suitable topology to study the limit N → ∞. By embedding the discrete phase space into a Cantor set we provided a natural setting to define topological e...
متن کاملAbsorbing Cantor sets in dynamical systems: Fibonacci maps
One of the central themes in the theory of dynamical systems is the concept of attractors. However, there is no complete consensus about the ‘correct’ definition of this notion. In particular it is not clear whether an attractor should attract a topologically big set or a set which is large in a metric sense. So, if f :M → M is a dynamical system defined on a manifold M , then we could define a...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولUltrafilters and non-Cantor minimal sets in linearly ordered dynamical systems
It is well known that infinite minimal sets for continuous functions on the interval are Cantor sets; that is, compact zero dimensional metrizable sets without isolated points. On the other hand, it was proved in Alcaraz and Sanchis (Bifurcat Chaos 13:1665–1671, 2003) that infinite minimal sets for continuous functions on connected linearly ordered spaces enjoy the same properties as Cantor set...
متن کاملCantor sets
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space ω of irrationals, or certain of its subspaces. In particular, given f ∈ (ω\{0}), we consider compact sets of the form Q i∈ω Bi, where |Bi| = f(i) for all, or for infinitely many, i. We also consider “n-splitting” compact sets, i.e., compact sets K such that for any f ∈ K and i ∈ ω, |{g(i) : ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2006
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.2171518